Results of Proficiency Test Methyl Methacrylate (MMA) February 2020

Organized by: Institute for Interlaboratory Studies

Spijkenisse, the Netherlands

Author: ing. R.J. Starink

Correctors: ing. A.S. Noordman-de Neef & ing. M. Meijer

Report iis20C02

March 2020

CONTENTS

INTRODUCTION	3
SET UP	3
QUALITY SYSTEM	3
PROTOCOL	3
CONFIDENTIALITY STATEMENT	3
SAMPLES	. 4
STABILITY OF THE SAMPLES	4
ANALYZES	4
RESULTS	5
STATISTICS	5
GRAPHICS	6
Z-SCORES	6
EVALUATION	7
EVALUATION PER TEST	7
PERFORMANCE EVALUATION FOR THE GROUP OF LABORATORIES	9
COMPARISON OF THE PROFICIENCY TEST OF FEBRUARY 2020 WITH PREVIOUS PTS	10
	INTRODUCTION SET UP

Appendices:

1	Data, statistical and graphic results	12
2	Other reported test results	25
3	Number of participants per country	26
4	Abbreviations and literature	27

1 INTRODUCTION

Since 2009, the Institute for Interlaboratory Studies (iis) organizes a proficiency scheme for Methyl Methacrylate (MMA) once every two year. During the annual proficiency testing (PT) program 2019/2020 it was decided to continue the round robin for the analysis of Methyl Methacrylate.

In this interlaboratory study 13 laboratories from 11 different countries registered for participation for the PT on Methyl Methacrylate. See appendix 3 for the number of participants per country.

In this report the results of the 2020 proficiency test on Methyl Methacrylate are presented and discussed. This report is also electronically available through the iis website www.iisnl.com.

2 SET UP

The Institute for Interlaboratory Studies (iis) in Spijkenisse, the Netherlands, was the organizer of this proficiency test (PT). Sample analyzes for fit-for-use and homogeneity testing were subcontracted to an ISO/IEC17025 accredited laboratory. It was decided to send one sample of 0.5 L Methyl Methacrylate labelled #20002.

The participants were requested to report rounded and unrounded test results. The unrounded test results were preferably used for statistical evaluation.

2.1 QUALITY SYSTEM

The Institute for Interlaboratory Studies in Spijkenisse, the Netherlands, has implemented a quality system based on ISO/IEC17043:2010. This ensures strict adherence to protocols for sample preparation and statistical evaluation and 100% confidentiality of participant's data. Feedback from the participants on the reported data is encouraged and customer's satisfaction is measured on a regular basis by sending out questionnaires.

2.2 PROTOCOL

The protocol followed in the organization of this proficiency test was the one as described for proficiency testing in the report 'iis Interlaboratory Studies: Protocol for the Organisation, Statistics and Evaluation' of June 2018 (iis-protocol, version 3.5). This protocol is electronically available through the iis website www.iisnl.com, from the FAQ page.

2.3 CONFIDENTIALITY STATEMENT

All data presented in this report must be regarded as confidential and for use by the participating companies only. Disclosure of the information in this report is only allowed by means of the entire report. Use of the contents of this report for third parties is only allowed by written permission of the Institute for Interlaboratory Studies. Disclosure of the identity of one or more of the participating companies will be done only after receipt of a written agreement of the companies involved.

MMA: iis20C02 page 3 of 27

2.4 SAMPLES

A batch of approximately 20 liters of Methyl Methacrylate obtained from a European supplier was spiked with Methanol and Acetone. After homogenization 38 amber 0.5 L glass bottles were filled and labelled #20002. The homogeneity of the subsamples #20002 was checked by determination of Density in accordance with ISO12185 and Methanol in accordance with an in-house test method on 4 stratified randomly selected samples.

	Density at 20°C in kg/L	Methanol in mg/kg
sample #20002-1	0.94333	40.0
sample #20002-2	0.94334	40.0
sample #20002-3	0.94335	40.0
sample #20002-4	0.94333	40.0

Table 1: homogeneity test results of subsamples #20002

From the above test results the repeatabilities were calculated and compared with 0.3 times the reproducibility of the corresponding reference method in agreement with the procedure of ISO13528, Annex B2 in the next table.

	Density at 20°C in kg/L	Methanol in mg/kg
r (observed)	0.00003	0.0
reference method	ISO12185:96	Horwitz
0.3 * R (reference method)	0.00015	3.1

Table 2: evaluation of the repeatabilities of subsamples #20002

The calculated repeatabilities were in agreement with 0.3 times the reproducibility of the respective reference methods. Therefore, homogeneity of the subsamples was assumed.

To each of the participating laboratories one bottle of 0.5L labelled #20002 was sent on January 15, 2020. An SDS was added to the sample package.

2.5 STABILITY OF THE SAMPLES

The stability of the Methyl Methacrylate packed in the amber glass bottles was checked. The material was found sufficiently stable for the period of the proficiency test.

2.6 ANALYZES

The participants were asked to determine on sample #20002: Acidity as Acrylic Acid, Appearance, Color Pt/Co, Density at 20°C, Inhibitor as Topanol A, Water, Purity (two different definitions), Acetone, Ethyl Acrylate, Ethyl Methacrylate, Methanol, Methyl Acrylate, Methyl Isobutyrate, Methyl Propionate, Methyl alpha-hydroxyisobutyrate and Other Impurities.

It was also requested to report what type of column was used for the GC analysis.

MMA: iis20C02 page 4 of 27

It was explicitly requested to treat the sample as if it was a routine sample and to report the test results using the indicated units on the report form and not to round the test results, but report as much significant figures as possible. It was also requested not to report 'less than' test results, which are above the detection limit, because such test results cannot be used for meaningful statistical evaluations.

To get comparable test results, a detailed report form and a letter of instructions are prepared. On the report form the reporting units are given as well as the appropriate reference test methods that will be used during the evaluation. The detailed report form and the letter of instructions are both made available on the data entry portal www.kpmd.co.uk/sgs-iis/. The participating laboratories are also requested to confirm the sample receipt on this data entry portal. The letter of instructions can also be downloaded from the iis website www.iisnl.com.

3 RESULTS

During five weeks after sample dispatch, the test results of the individual laboratories were gathered via the data entry portal www.kpmd.co.uk/sgs-iis/. The reported test results are tabulated per determination in appendices 1 and 2 of this report. The laboratories are presented by their code numbers.

Directly after the deadline, a reminder was sent to those laboratories that had not reported test results at that moment. Shortly after the deadline, the available test results were screened for suspect data. A test result was called suspect in case the Huber Elimination Rule (a robust outlier test) found it to be an outlier. The laboratories that produced these suspect data were asked to check the reported test results (no reanalyzes). Additional or corrected test results are used for data analysis and the original test results are placed under 'Remarks' in the test result tables in appendix 1. Test results that came in after the deadline were not taken into account in this screening for suspect data and thus these participants were not requested for checks.

3.1 STATISTICS

The protocol followed in the organization of this proficiency test was the one as described for proficiency testing in the report 'iis Interlaboratory Studies: Protocol for the Organisation, Statistics and Evaluation' of June 2018 (iis-protocol, version 3.5).

For the statistical evaluation, the *unrounded* (when available) figures were used instead of the rounded test results. Test results reported as '<...' or '>...' were not used in the statistical evaluation.

First, the normality of the distribution of the various data sets per determination was checked by means of the Lilliefors-test, a variant of the Kolmogorov-Smirnov test and by the calculation of skewness and kurtosis. Evaluation of the three normality indicators in combination with the visual evaluation of the graphic Kernel density plot, lead to judgement of the normality being either 'unknown', 'OK', 'suspect' or 'not OK'. After removal of outliers, this check was repeated. If a data set does not have a normal distribution, the (results of the) statistical evaluation should be used with due care.

MMA: iis20C02 page 5 of 27

According to ISO5725 the original test results per determination were submitted to Dixon's and/or Grubbs' and/or Rosner's outlier tests. Outliers are marked by D(0.01) for the Dixon's test, by G(0.01) or DG(0.01) for the Grubbs' test and by R(0.01) for the Rosner's test. Stragglers are marked by D(0.05) for the Dixon's test, by G(0.05) or DG(0.05) for the Grubbs' test and by R(0.05) for the Rosner's test. Both outliers and stragglers were not included in the calculations of averages and standard deviations.

For each assigned value, the uncertainty was determined in accordance with ISO13528. Subsequently the calculated uncertainty was evaluated against the respective requirement based on the target reproducibility in accordance with ISO13528. In this PT, the criterion of ISO13528, paragraph 9.2.1. was met for all evaluated tests, therefore, the uncertainty of all assigned values may be negligible and need not be included in the PT report.

Finally, the reproducibilities were calculated from the standard deviations by multiplying these with a factor of 2.8.

3.2 GRAPHICS

In order to visualize the data against the reproducibilities from literature, Gauss plots were made, using the sorted data for one determination (see appendix 1). On the Y-axis, the reported test results are plotted. The corresponding laboratory numbers are on the X-axis. The straight horizontal line presents the consensus value (a trimmed mean). The four striped lines, parallel to the consensus value line, are the +3s, +2s, -2s and -3s target reproducibility limits of the selected reference test method. Outliers and other data, which were excluded from the calculations, are represented as a cross. Accepted data are represented as a triangle.

Furthermore, Kernel Density Graphs were made. The Kernel Density Graph is a method for producing a smooth density approximation to a set of data that avoids some problems associated with histograms. Also, a normal Gauss curve was projected over the Kernel Density Graph for reference.

3.3 Z-SCORES

To evaluate the performance of the participating laboratories the z-scores were calculated. As it was decided to evaluate the performance of the participants in this proficiency test (PT) against the literature requirements, e.g. ASTM or ISO reproducibilities, the z-scores were calculated using a target standard deviation. This results in an evaluation independent of the variation in this interlaboratory study.

The target standard deviation was calculated from the literature reproducibility by division with 2.8. In case no literature reproducibility was available, other target values were used, like Horwitz or an estimated reproducibility based on former its proficiency tests.

When a laboratory did use a test method with a reproducibility that is significantly different from the reproducibility of the reference test method used in this report, it is strongly advised to recalculate the z-score, while using the reproducibility of the actual test method used, this in order to evaluate whether the reported test result is fit-for-use.

MMA: iis20C02 page 6 of 27

The z-scores were calculated according to:

```
z_{\text{(target)}} = (test result - average of PT) / target standard deviation
```

The $z_{\text{(target)}}$ scores are listed in the test result tables in appendix 1.

Absolute values for z<2 are very common and absolute values for z>3 are very rare. Therefore, the usual interpretation of z-scores is as follows:

```
|z| < 1 good
1 < |z| < 2 satisfactory
2 < |z| < 3 questionable
3 < |z| unsatisfactory
```

4 **EVALUATION**

In this proficiency test no problems were encountered with the dispatch of the samples. Only one participant did not report any test results. All other participants reported before the deadline. Not all laboratories were able to perform all analyzes requested.

Twelve participants reported 99 numerical test results. Observed were 3 statistical outlying test results, which is 3.0%. In proficiency tests, outlier percentages of 3% - 7.5% are quite normal.

Not all original data sets proved to have a normal Gaussian distribution. These are referred to as "not OK" or "suspect". The statistical evaluation of these data sets should be used with due care, see also paragraph 3.1.

4.1 EVALUATION PER TEST

In this section the reported test results are discussed per test. The test methods, which were used by the various laboratories, were taken into account for explaining the observed differences when possible and applicable. These test methods are also in the tables together with the reported test results. The abbreviations, used in these tables, are explained in appendix 4.

Unfortunately, a suitable reference test method providing the precision data is not available for all determinations. For these tests the calculated reproducibility was compared against the reproducibility estimated from the Horwitz equation.

In the iis PT reports, ASTM test methods are referred to with a number (e.g. D1209) and an added designation for the year that the test method was adopted or revised (e.g. D1209:05). If applicable, a designation in parentheses is added to designate the year of re-approval (e.g. D1209:05(2011)). In the test result tables of appendix 1 only the test method number and year of adoption or revision (e.g. D1209:05) are used.

MMA: iis20C02 page 7 of 27

Acidity as Acrylic Acid: This determination was not problematic. No statistical outliers were observed. The calculated reproducibility is in agreement with the requirements of ASTM D1613:17.

<u>Appearance</u>: No analytical problems were observed. All laboratories agreed about the appearance of the sample, which was bright and clear and passes the test.

Color Pt/Co: This determination was not problematic. No statistical outliers were observed. The calculated reproducibility is in agreement with the requirements of ASTM D1209:05(2011).

<u>Density at 20°C</u>: This determination was not problematic. No statistical outliers were observed. The calculated reproducibility is in agreement with the requirements of ISO12185:96.

Inhibitor as Topanol A: This determination was not problematic. No statistical outliers were observed. The calculated reproducibility is in good agreement with the estimated reproducibility calculated using the Horwitz equation.

<u>Water:</u> This determination was problematic. One statistical outlier was observed. The calculated reproducibility after rejection of the statistical outlier is not in agreement with the requirements of ASTM E1064:16.

Regretfully, ASTM D3362 was withdrawn in 2011 with no replacement. As there is no other suitable reference test method with precision data available, it was decided to evaluate the GC Determination with the requirements of ASTM D3362:05.

Six participants reported which column was used for GC analysis. However four different types of columns were mentioned, therefore no clear conclusions could be drawn.

<u>Purity (100%-impurities-water-acidity)</u>: This determination was not problematic. One statistical outlier was observed. However, the calculated reproducibility after rejection of the statistical outlier is in agreement with the requirements of ASTM D3362:05.

<u>Purity on dry basis (100%-impurities)</u>: This determination was not problematic. One statistical outlier was observed. However, the calculated reproducibility after rejection of the statistical outlier is in agreement with the requirements of ASTM D3362:05.

Acetone: This determination was not problematic. No statistical outliers were observed. The calculated reproducibility is in full agreement with the estimated reproducibility calculated using the Horwitz equation.

Ethyl Acrylate: This determination may be problematic. No statistical outliers were observed. However, the calculated reproducibility is not in agreement with the estimated reproducibility calculated using the Horwitz equation.

MMA: iis20C02 page 8 of 27

Methanol:

This determination may be problematic. No statistical outliers were observed. However, the calculated reproducibility is not in agreement with the estimated reproducibility calculated using the Horwitz equation.

<u>Methyl Isobutyrate</u>: This determination may be problematic. No statistical outliers were observed. However, the calculated reproducibility is not in agreement with the estimated reproducibility calculated using the Horwitz equation.

Other Impurities: In total five test results were reported. The calculated reproducibility is large. Therefore, no z-scores were calculated.

The majority of the participants agreed on a content close to or below the quantification limits of Ethyl Methacrylate, Methyl Acrylate, Methyl Propionate and Methyl alphahydroxyisobutyrate. Therefore, no z-scores were calculated. The test results are given in appendix 2.

4.2 Performance evaluation for the group of Laboratories

A comparison has been made between the reproducibility as declared by the relevant reference test method or as declared by the estimated target reproducibility using the Horwitz equation and the reproducibility as found for the group of participating laboratories. The number of significant test results, the average result, the calculated reproducibility (2.8 * standard deviation) and the target reproducibility derived from literature reference test methods (in casu ASTM standards) or based on previous proficiency tests or the estimated target reproducibility are presented in the next table.

Parameter	unit	n	average	2.8 * sd	R (lit)
Acidity as Acrylic Acid	mg/kg	10	11.3	13.1	14
Appearance		12	pass	n.a.	n.a.
Color Pt/Co		10	2.8	3.8	7
Density at 20°C	kg/L	12	0.9434	0.0002	0.0005
Inhibitor as Topanol A	mg/kg	10	9.7	2.7	3.1
Water	mg/kg	10	98.0	36.7	16.8
Purity *)	%M/M	9	99.959	0.015	0.27
Purity on dry basis *)	%M/M	8	99.968	0.012	0.27
Acetone	mg/kg	5	31.9	8.8	8.5
Ethyl Acrylate	mg/kg	4	90.8	34.5	20.6
Methanol	mg/kg	7	36.9	21.5	9.6
Methyl Isobutyrate	mg/kg	6	39.9	16.4	10.3
Other impurities	mg/kg	5	191.6	281.9	(87.0)

Table 3: reproducibilities of test results on sample #20002

MMA: iis20C02 page 9 of 27

 $^{^{\}star})$ see definition in paragraph 4.1 and appendix 1

Without further statistical calculations it could be concluded that for many tests there is a good compliance of the group of participating laboratories with the relevant reference test methods. The problematic tests have been discussed in paragraph 4.1.

4.3 COMPARISON OF THE PROFICIENCY TEST OF FEBRUARY 2020 WITH PREVIOUS PTS

	February 2020	January 2018	June 2016	June 2014	May 2011
Number of reporting labs	12	15	12	11	11
Number of results reported	99	126	112	99	85
Number of statistical outliers	3	3	4	2	3
Percentage outliers	3.0%	2.4%	3.6%	2.0%	3.5%

Table 4: comparison with previous proficiency tests

In proficiency tests, outlier percentages of 3% - 7.5% are quite normal.

The performance of the determinations of the proficiency tests was compared against the requirements of the respective reference test methods. The conclusions are given the following table.

	February 2020	January 2018	June 2016	June 2014	May 2011
Acidity as Acrylic Acid	+/-	+	+	++	+/-
Color Pt/Co	++	++	++	++	++
Density at 20°C	++	++	++	++	++
Inhibitor as Topanol A	+	+		++	-
Water		-	-		++
Purity *)	++	++	++	n.e.	n.e.
Purity on dry basis 8)	++	++	++	n.e.	n.e.
Acetone	+/-	n.e.	()	n.e.	n.e.
Ethyl Acrylate	-	n.e.	n.e.	n.e.	n.e.
Ethyl Methacrylate	n.e.	n.e.	n.e.	n.e.	n.e.
Methanol		ı	()	1	n.e.
Methyl Acrylate	n.e.	ı	+/-	+	+/-
Methyl Isobutyrate	-	-	-	+	++
Methyl Propionate	n.e.	-	+/-	n.e.	n.e.
Methyl alpha-hydroisobutyrate	n.e.	+	++	n.e.	n.e.
Other impurities	()	-	n.e.	n.e.	n.e.

Table 5: comparison determinations against the reference test method results between brackets are near or below the lower detection limit

MMA: iis20C02 page 10 of 27

^{*)} see definition in paragraph 4.1 and appendix 1

The following performance categories were used:

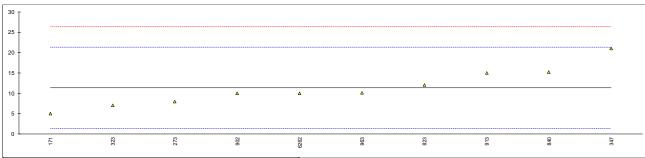
++ : group performed much better than the reference test method

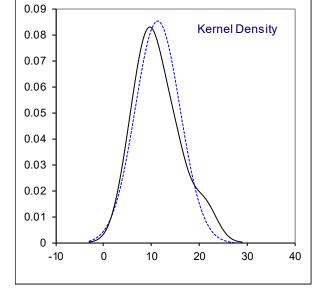
+ : group performed better than the reference test method

+/- : group performance equals the reference test method

- : group performed worse than the reference test method

-- : group performed much worse than the reference test method


n.e. : not evaluated

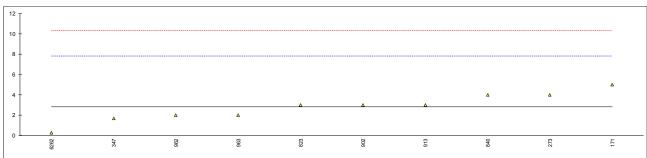

MMA: iis20C02 page 11 of 27

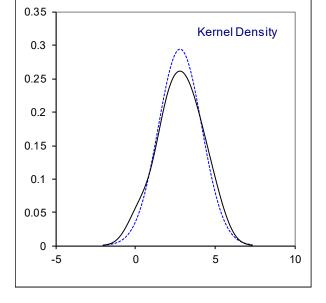
APPENDIX 1

Determination of Acidity as Acrylic Acid on sample #20002; results in mg/kg

lab	method	value	mark	z(targ)	remarks
171	D1613	5	С	-1.27	First reported as 0.005 %M/M
273	D1613	8		-0.67	
311					
323	D1613	7		-0.87	
347	D1613	21		1.93	
557					
823	D1613	12		0.13	
840	D1613	15.2		0.77	
902	D1613	10		-0.27	
913	D1613	15		0.73	
962					
963	D1613	10.1		-0.25	
6262	D1613	10		-0.27	
	normality	OK			
	n	10			
	outliers	0			
	mean (n)	11.33			
	st.dev. (n)	4.683			
	R(calc.)	13.11			
	st.dev.(D1613:17)	5			
	R(D1613:17)	14			
	. ,				

MMA: iis20C02 page 12 of 27

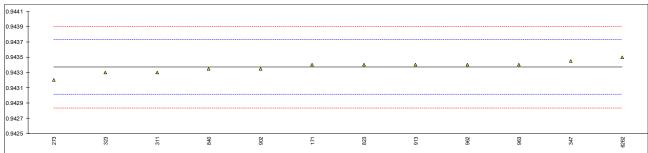

Determination of Appearance on sample #20002;

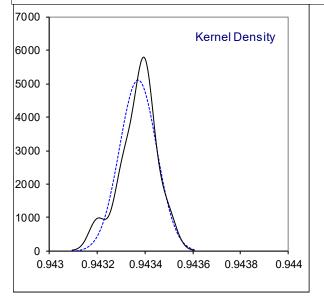

lab	method	value	mark	z(targ)	remarks
171	E2680	Pass			
273	Visual	Bright & Clear			
311	E2680	pass			
323	D4176	clear & bright			
347	E2680	Pass			
557					
823	E2680	Pass			
840	E2680	Pass			
902	E2680	Pass			
913	E2680	Pass			
962	D4176	Clear and bright			
963	Visual	Clear			
6262	Visual	Clear & bright, free from sediment			
	n	12			
	mean (n)	Pass			

MMA: iis20C02 page 13 of 27

Determination of Color Pt/Co on sample #20002;

lab	method	value	mark	z(targ)	remarks
171	D1209	5		0.88	
273	D1209	4		0.48	
311	D1209	<5			
323	D1209	<5			
347	D5386	1.7		-0.44	
557					
823	D5386	3		0.08	
840	D1209	4		0.48	
902	D5386	3		0.08	
913	D5386	3		0.08	
962	D1209	2		-0.32	
963	D1209	2		-0.32	
6262	D1209	0.3		-1.00	
	normality	OK			
	n	10			
	outliers	0			
	mean (n)	2.80			
	st.dev. (n)	1.357			
	R(calc.)	3.80			
	st.dev.(D1209:05)	2.5			
	R(D1209:05)	7			



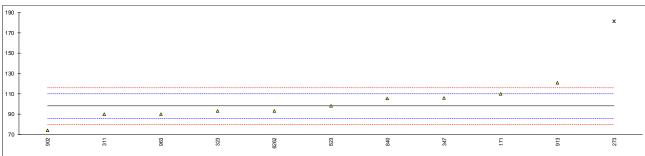


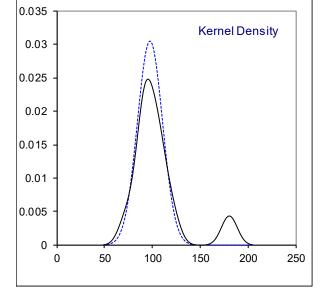
MMA: iis20C02 page 14 of 27

Determination of Density at 20°C on sample #20002; results in kg/L

lab	method	value	mark	z(targ)	remarks
171	D4052	0.9434		0.16	
273	D4052	0.9432		-0.96	
311	D4052	0.9433		-0.40	
323	D4052	0.9433		-0.40	
347	D4052	0.94345		0.44	
557					
823	D4052	0.94340		0.16	
840	D4052	0.94335		-0.12	
902	ISO12185	0.94335		-0.12	
913	D4052	0.9434		0.16	
962	D4052	0.9434		0.16	
963	D4052	0.9434		0.16	
6262	D4052	0.9435		0.72	
	normality	suspect			
	n	12			
	outliers	0			
	mean (n)	0.94337			
	st.dev. (n)	0.000078			
	R(calc.)	0.00022			
	st.dev.(ISO12185:96)	0.000179			
	R(ISO12185:96)	0.0005			

MMA: iis20C02 page 15 of 27

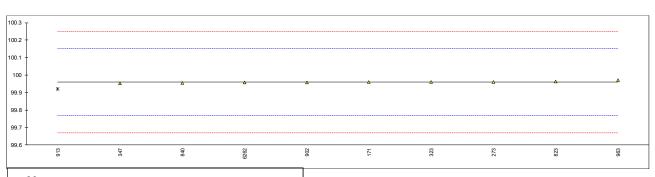

Determination of Inhibitor as Topanol A on sample #20002; results in mg/kg

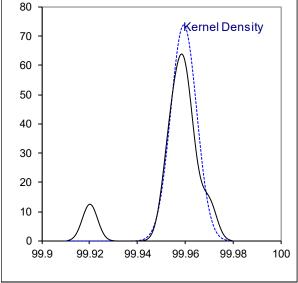

lab method value 171 INH-01.1 11.7 273 INH-2 8.66 311 INH-510 10.9 323 INH-0002 9.3 347 INH-002 10.1	mark	z(targ) 1.81 -0.95	remarks				
273 INH-2 8.66 311 INH-510 10.9 323 INH-0002 9.3 347 INH-002 10.1		-0.95					
323 INH-0002 9.3 347 INH-002 10.1							
347 INH-002 10.1		1.08					
347 INH-002 10.1		-0.37					
		0.36					
557							
823 INH-2 9		-0.64					
840 INH-0002 8.8		-0.82					
902 INH-core 2 9.3		-0.37					
913 INH-core 2 9.9 962		0.18					
963 INH-006C 9.4		-0.28					
6262							
normality suspect	t						
n 10							
outliers 0							
mean (n) 9.71							
st.dev. (n) 0.968							
R(calc.) 2.71 st.dev.(Horwitz) 1.103							
R(Horwitz) 3.09							
11(1101WILZ) 3.03							
14 T							
13							
12 †							Δ
10 -					Δ	Δ	
	Δ	Δ	Δ	-			
8 +							
7 -							
6 +							
5 4							
273	328	902	963	913	347	311	171
0.5							
0.45 -	Kernel Density	y					
0.4 -	Λ_{c}						
	//\						
0.35 -	// \ \						
0.3 -	$H \setminus V$						
0.5							
0.25 -							
0.2 -	\\						
	\\						
0.15 -							
0.1 -	//						
0.05 -	//						
1 0 +							
0 1 5	10	15					

MMA: iis20C02 page 16 of 27

Determination of Water on sample #20002; results in mg/kg

lab	method	value	mark	z(targ)	remarks
171	E1064	110		2.00	
273	E203	181	C,G(0.01)	13.86	First reported 225
311	E1064	90		-1.34	
323	E1064	93		-0.84	
347	E1064	106		1.33	
557					
823	E1064	98		-0.01	
840	E1064	105.3		1.21	
902	E1064	74		-4.01	
913	E1064	121		3.84	
962					
963	E1064	90		-1.34	
6262	E1064	93		-0.84	
	normality	OK			
	n	10			
	outliers	1			
	mean (n)	98.03			
	st.dev. (n)	13.099			
	R(calc.)	36.68			
	st.dev.(E1064:16)	5.987			
	R(E1064:16)	16.76			

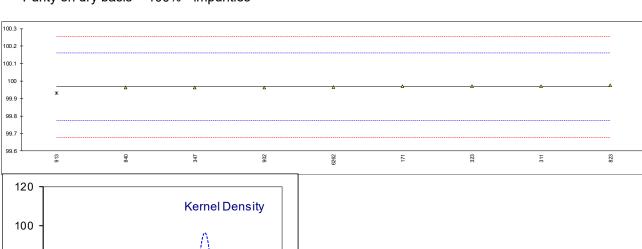


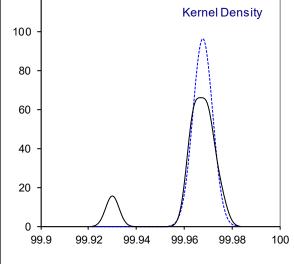

MMA: iis20C02 page 17 of 27

Determination of Purity*) on sample #20002; results in %M/M

lab	method	value	mark	z(targ)	Tyoe of column	remarks
171	INH-01.1	99.96		0.01	DB1701 30m x 0.32u x 1u	
273	INH-1A	99.96		0.01	DB-1 - 30m x 0.450mm x 2.55u	
311 323	D3362Mod.	99.96		0.01	CPWax 52 CB 60 m x 0,32 mm x 1,2 μm	
347	INH-002	99.952		-0.08		
557	1111 002					
823 840	INH-2 INH-0002	99.9640 99.954		0.05 -0.05	CP Sil 5CB 25m * 0.32mm * 1,2 μm	
902	INH-0002 INH-core 2	99.954		-0.03		
902	INH-core 2	99.957	G(0.01)	-0.02 -0.41	CP Sil 5 CB	
962	1111 0010 2		O(0.01)		01 011 0 02	
963	INH-006C	99.97		0.11		
6262		99.9563		-0.03	CP-Wax 52CB 60m*320μm*0,5 μm	
	normality	OK				
	n	9				
	outliers	1				
	mean (n) st.dev. (n)	99.9593 0.00540				
	R(calc.)	0.00540				
	st.dev.(D3362:05)	0.09643				
	R(D3362:05)	0.27				

*) Purity= 100% - impurities - water - acidity




MMA: iis20C02 page 18 of 27

Determination of Purity on dry basis*) on sample #20002; results in %M/M

lab	method	value	mark	z(targ)	Type of column used	remarks
171	INH-01.1	99.97		0.02	DB1701 30m x 0.32u x 1u	
273					DB-1 - 30m x 0.450mm x 2.55u	
311	INH-114	99.97		0.02	CPWax 52 CB 60 m x 0,32 mm x 1,2 µm	
323	D3362Mod.	99.97		0.02		
347	INH-002	99.964		-0.04		
557						
823	INH-2	99.9750		0.07	CP Sil 5CB 25m * 0.32mm * 1,2 µm	
840	INH-0002	99.963		-0.05		
902	INH-core 2	99.964		-0.04		
913	INH-core 2	99.93	G(0.01)	-0.39	CP Sil 5 CB	
962						
963						
6262		99.9666		-0.01	CP-Wax 52CB 60m*320μm*0,5 μm	
	normality	OK				
	n	8				
	outliers	1				
	mean (n)	99.9678				
	st.dev. (n)	0.00414				
	R(calc.)	0.0116				
	st.dev.(D3362:05)	0.09643				
	R(D3362:05)	0.27				

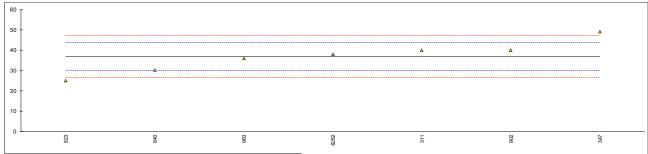
*) Purity on dry basis = 100% - impurities

MMA: iis20C02 page 19 of 27

Determination of Acetone on sample #20002; results in mg/kg

lab	method	value	mark	z(targ)	remarks
171					
273					
311	INH-114	<10		<-7.23	False negative test result?
323					
347	INH-002	35		1.02	
557					
823	INH-2	29		-0.96	
840	INH-0002	28.5		-1.12	
902	INH-core 2	35		1.02	
913	INH-core 2	<10		<-7.23	False negative test result?
962					
963					
6262		32		0.03	
	n armality	unknoven			
	normality	unknown			
	n outliers	5 0			
	mean (n)	31.90			
	st.dev. (n)	3.130			
	R(calc.)	8.77			
	st.dev.(Horwitz)	3.031			
	R(Horwitz)	8.49			
	11(110111112)	0.10			
45 T					
40 +					
35 +					Δ Δ
30 +	Δ		Δ		-
25 -					
20 -					
1 1					

MMA: iis20C02 page 20 of 27

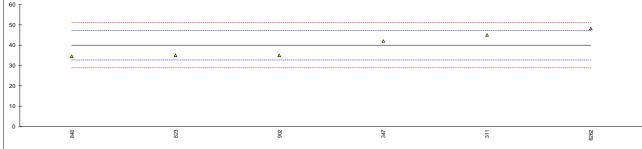

Determination of Ethyl Acrylate on sample #20002; results in mg/kg

lab	method	value	mark	z(targ)	remarks	
171						
273						
311						
323						
347	INH-002	109		2.48		
557	11.11.0					
823	INH-2	86		-0.64 -0.64		
840 902	INH-0002 INH-core 2	86.0 <5		-0.64 <-11.64	False magative test requit?	
902	INH-core 2	<0		<-II.04	False negative test result?	
962						
963						
6262		82		-1.19		
0202		02		1.10		
	normality	unknown				
	n	4				
	outliers	0				
	mean (n)	90.75				
	st.dev. (n)	12.312				
	R(calc.)	34.47				
	st.dev.(Horwitz)	7.367				
	R(Horwitz)	20.63				
¹²⁰ T	<u></u>					
100 +						Δ
1.00				<u> </u>	Δ	_
80 +	Δ					
60 +						
30 7						
40 -						
20						
20 +						
0	582		8	9	98	

MMA: iis20C02 page 21 of 27

Determination of Methanol on sample #20002; results in mg/kg

lab	method	value	mark	z(targ)	remarks
171					
273					
311	INH-114	40		0.92	
323					
347	INH-002	49		3.54	
557					
823	INH-2	25		-3.46	
840	INH-0002	30.2		-1.94	
902	INH-core 2	40		0.92	
913	INH-core 2	<10		<-7.84	False negative test result?
962					
963	INH-006C	35.8		-0.31	
6262		38		0.33	
	normality	unknown			
	n	7			
	outliers	0			
	mean (n)	36.86			
	st.dev. (n)	7.689			
	R(calc.)	21.52			
	st.dev.(Horwitz)	3.427			
	R(Horwitz)	9.59			
60 T					
50 +					Δ



MMA: iis20C02 page 22 of 27

Determination of Methyl Isobutyrate on sample #20002; results in mg/kg

lab	method	value	mark	z(targ)	remarks
171					
273					
311	INH-114	45		1.38	
323					
347	INH-002	42		0.56	
557					
823	INH-2	35		-1.34	
840	INH-0002	34.6		-1.45	
902	INH-core 2	35		-1.34	
913					
962					
963					
6262		48		2.20	
	normality	unknown			
	n	6			
	outliers	0			
	mean (n)	39.93			
	st.dev. (n)	5.867			
	R(calc.)	16.43			
	st.dev.(Horwitz)	3.668			
	R(Horwitz)	10.27			
	` ,				
⁶⁰ T					

MMA: iis20C02 page 23 of 27

323

Determination of Other Impurities on sample #20002; results in mg/kg

6262

lab	method	value	mark	z(targ)	remarks
171	INH-01.1	253			
273					
311					
323	INH-0002	302			
347					
557					
823 840	INH-0002	48.2			
902	INH-core 2	220			
913	11411-0016 2				
962					
963					
6262		135			
	normality	unknown			
	n	5			
	outliers	0			
	mean (n)	191.64			
	st.dev. (n) R(calc.)	100.663 281.86			
	st.dev.(Horwitz 5 comp)	(31.084)			
	R(Horwitz 5 comp)	(87.04)			
	r (r ioi witz o comp)	(07.04)			
005					
325 T					Δ
275 -					
					Δ
225 -				Δ	
175 -					
		Δ			
125 -					
75 -					
25	Δ				

MMA: iis20C02 page 24 of 27

APPENDIX 2

Other reported test results
Determination of individual Components on sample #20002; in mg/kg

lab	Ethyl Methacrylate	Methyl Acrylate	Methyl Propionate	Methyl alpha-hydroxy isobutyrate
171			<100	
273				
311	35	<10		
323	<100		<100	<100
347			14	<5
557				
823	<5	<5	<5	<5
840	48.4	<5	11.8	50.5
902	<5	<5	13	<5
913				
962				
963				
6262	0	9	0	0

MMA: iis20C02 page 25 of 27

APPENDIX 3

Number of participants per country

- 2 labs in BELGIUM
- 1 lab in BRAZIL
- 1 lab in INDIA
- 1 lab in NETHERLANDS
- 2 labs in SAUDI ARABIA
- 1 lab in SOUTH AFRICA
- 1 lab in SOUTH KOREA
- 1 lab in SPAIN
- 1 lab in TURKEY
- 1 lab in UNITED STATES OF AMERICA
- 1 lab in VIETNAM

MMA: iis20C02 page 26 of 27

APPENDIX 4

Abbreviations

C = final test result after checking of first reported suspect test result

D(0.01) = outlier in Dixon's outlier test
D(0.05) = straggler in Dixon's outlier test
G(0.01) = outlier in Grubbs' outlier test
G(0.05) = straggler in Grubbs' outlier test
DG(0.01) = outlier in Double Grubbs' outlier test
DG(0.05) = straggler in Double Grubbs' outlier test

R(0.01) = outlier in Rosner's outlier test R(0.05) = straggler in Rosner's outlier test

W = test result withdrawn on request participant ex = test result excluded from statistical evaluation

n.a. = not applicablen.e. = not evaluatedn.d. = not detected

SDS = Safety Data Sheet

Literature

- 1 iis Interlaboratory Studies, Protocol for the Organisation, Statistics & Evaluation, June 2018
- 2 ASTM E178:02
- 3 ASTM E1301:03
- 4 ISO5725:86
- 5 ISO5725, parts 1-6, 1994
- 6 ISO13528:05
- 7 M. Thompson and R. Wood, J. AOAC Int, <u>76</u>, 926, (1993)
- 8 W.J. Youden and E.H. Steiner, Statistical Manual of the AOAC, (1975)
- 9 IP 367:84
- 10 DIN 38402 T41/42
- 11 P.L. Davies, Fr. Z. Anal. Chem, <u>331</u>, 513, (1988)
- 12 J.N. Miller, Analyst, 118, 455, (1993)
- 13 Analytical Methods Committee, Technical brief, No 4, January 2001.
- 14 P.J. Lowthian and M. Thompson, The Royal Society of Chemistry, Analyst, 127, 1359-1364 (2002)
- Bernard Rosner, Percentage Points for a Generalized ESD Many-Outlier Procedure, Technometrics, <u>25(2)</u>, 165-172, (1983)
- 16 Horwitz, R. Albert, J. AOAC Int. 79-3, 589 (1996)

MMA: iis20C02 page 27 of 27